

Ing. Jesus Gonzalez

Gerente del Proyecto Termosolar Panamá "Desarrollo del Mercado de calentadores solares de agua en panamá"

Estudios profesionales:

- Ingeniero en Energías Renovables, ITSPR IER UNAM
- Diplomado en energías renovables y eficiencia energética, Universidad Politécnica de Cataluña Barcelona, España.
- Maestría en Innovación para el Desarrollo Empresarial Tecnológico de Monterrey México
- Programa gerencial en energía solar IESA Panamá
- Diplomado en Planeación energética territorial Organización Latinoamérica de la Energía Sede Ecuador
- Diplomado en diversidad, género y energía Organización Latinoamérica de la Energía Sede Ecuador **Experiencia Laboral:**
- Gerente de proyecto "Termosolar Panamá" Desarrollo del Mercado de Calentadores Solares de Agua en Panamá" - Programa de las Naciones unidas para el Medio Ambiente oficina Regional para América Latina y el Caribe
- Experto técnico en demanda de energía y cambio climático Programa de las Naciones unidas para el Medio Ambiente oficina Regional para América Latina y el Caribe
- Especialista en cambio climático Programa de las Naciones unidas para el Medio Ambiente oficina Regional para América Latina y el Caribe
- Ingeniero de proyectos en energía solar térmica Empresa Módulo Solar
- Encargado de Laboratorio de Pruebas para dispositivos para el aprovechamiento de energía solar térmica Departamento de innovación y desarrollo Empresa Módulo Solar

"Los amplios beneficios de la energía solar térmica en el sector agroindustrial"

Viernes 14 de octubre de 2022

PREPARADO POR:
Jesus Gonzalez
Gerente de Proyecto
ONU Medio Ambiente

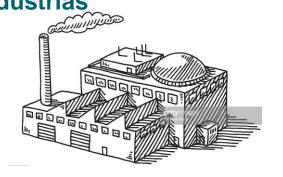
PROYECTO TERMOSOLAR PANAMÁ

Ciudad de Panamá

TERM SOLAR

Es una iniciativa para extender el uso de la tecnología solar térmica destinada al calentamiento de agua en el sector hotelero, salud pública, residencial y agroindustrial; y así contribuir a la reducción de emisiones de CO2, como a la mitigación del cambio climático.

Si quiero calentar agua para...



Duchas/Baño

Calor de proceso en industrias

Sanitización

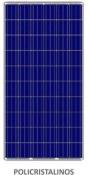
Lavado de Vajilla

Cocción de

¿Qué opciones tengo?

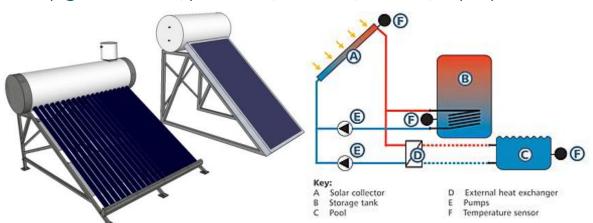
Calentadores a combustibles fósiles (GLP, GNL, Bunker, Diesel)

Calentadores eléctricos


Calentadores solares de agua

¿Es lo mismo solar térmico y solar fotovoltaico?

Solar Fotovoltaica = Electricidad



Solar Térmico = Calor

(agua caliente, procesos, cocción, secado, vapor)

¿Y si genero electricidad con paneles fotovoltaicos y la convierto en calor?

Eficiencia de conversión del sol en calor =70-

Solar térmico 70-80% vs 15-18% Solar

4 veces mas area de paneles fotovoltaicos y el doble de costo para la misma cantidad de calor!!

Comp. 1 Marco político regulatorio para la promoción de SCSA y toma de decisiones políticas informadas

Sitio Web

Nuevas secciones y diseño

- Proyecto piloto
- Publicaciones (videos y documentos)
- Iniciativas aliadas
- Eventos
- Calculador solar

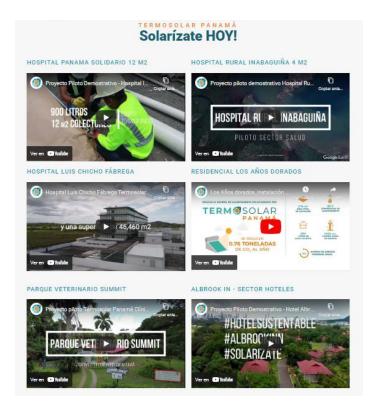
Ventajas

- Mayor visibilidad
- Más claridad
- Más facilidad de acceso
- Mayor interactividad
- Material didáctico para descargar de manera gratuita
- Mayor accesibilidad

TermosolarPanama.com 🛶

Comp. 1 Marco político regulatorio para la promoción de SCSA y toma de decisiones políticas informadas

Hallazgos de la Evaluación de Medio Término				
Aspectos positivos	Aspectos negativos			
Gobernanza (Junta directiva)	Co-Financiamiento			
Arreglos de supervisión (Responsables en cada componente)	Demoras en entregables y adquisiciones de productos derivado a temas de logística			
Alcance a beneficiarios (Diversidad del publico y sectores)				
Eficiencia en la ejecución del proyecto				
Derechos humanos y equidad de género				


Conclusiones

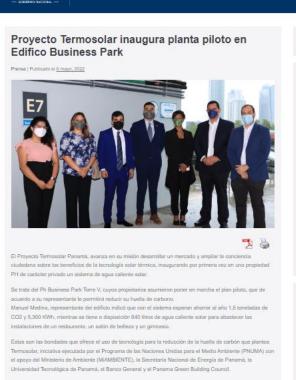
Altamente satisfactorio

Recomendaciones

- Priorización de adquisiciones del proyecto Implementación de mecanismo financiero Evaluación de impacto directo vs indirecto

Visualización de página web

El sitio web en números (junio): 420 visitantes únicos 1472 páginas vistas


Mejoras en la página web

- Actualización del Nucleo WordPress
- Actualización de Temas y Plugins
- Auditoría de Vulnerabilidades
- Optimización de Velocidad
- Eliminación de Virus y Malware
- Reparación de Fallas básicas
- Adicional se actualizó el cloudfare del dominio

Seguimiento con aliados

Banco de Ensayos UTP

Descarga de materiales

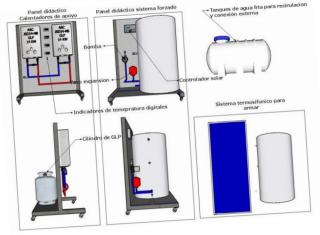
Comp. 2 Control de calidad y fortalecimiento de la oferta

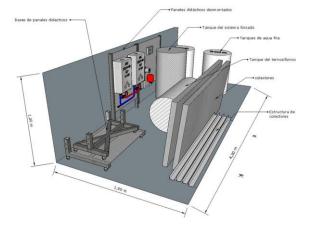
Manual de inversión

Comp. 2 Control de calidad y fortalecimiento de la oferta

Entrega de equipos didácticos a ITSE Panamá

Curso de Mujeres en Energía Solar (Fundación Calicanto)


Aula Movil (Solar Bus) INADEH


La primera aula móvil sobre energía solar térmica en Panamá

Comp. 2 Control de calidad y fortalecimiento de la oferta

Finalización de la primera edición del **Diplomado en Diseño e Instalación de Calentadores Solares** (UTP-CINEMI)

Comp. 2 Control de calidad y fortalecimiento de la oferta

Inicio de la primera edición del Curso de Instalación y Mantenimiento de Sistemas de Calentamiento Solar de Agua en INADEH

*En seguimiento a protocolo de bioseguridad establecido por el Ministerio de Salud en Panamá

EventosPresenciales*

Taller de sensibilización a Mujeres de Energía Solar Térmica

Comp. 3

Incremento en la sensibilización y mecanismos de apoyo para el usuario final

Presencia en medios digitales (Apoyo de socios del proyecto)

Click para más noticias de Termosolar Panamá

Campaña de Marketing asociado a la promoción de la energía térmica y sus beneficios

Comp. 3

Incremento en la sensibilización y mecanismos de apoyo para el usuario final

Talleres y más

44 ASISTENTES

DÍAS DE DURACIÓN

100% VIRTUAL

Comp. 3

Incremento en la sensibilización y mecanismos de apoyo para el usuario final

Video de Proyecto Piloto de Sector Público "Escuela Hato Chami"

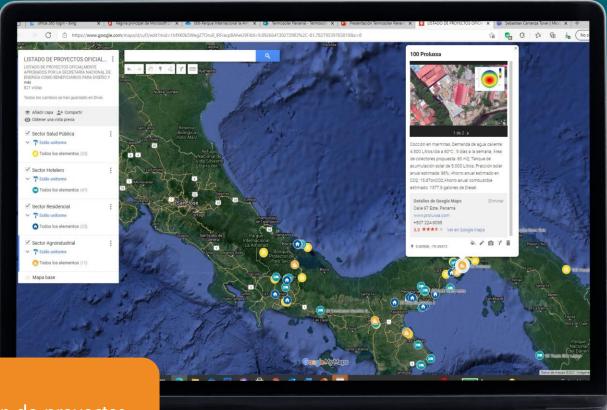
Video de Proyecto Piloto de Sector Privado "Business Park"

Ren Power 2022

Comp. 3

Incremento en la sensibilización y mecanismos de apoyo para el usuario final

Panamá Orgánica 2da Edición



FACMAN LATAM 2022

Ubicación de beneficiarios y datos generales del diseño en mapa interactivo

108

Edificaciones beneficiadas

Disponible en sitio web

Comp. 4 Implementación de proyectos pilotos

1.644-2.588 m² de colectores 92.260 lts. de almacenamiento

33% (15) Sistemas circulación forzada

Sistemas termosifónicos

319,643 lbs. GLP 1.505 MWh elec. 48.854 Gal. Diesel

79% de aporte solar 1.434 MWh_{th}

336 tonCO2

B/.1.376.021

5 años

Inversión total estimada en

100 proyectos

3.616.445 USD

Ahorro anual promedio

268,950 lbs. GLP 1.267 MWh elec. 41.106 Gal. Diesel nual promedic

43% (9)

Sistemas termosifónicos

76% de aporte solar 1.206 MWh_{th}

Emisiones evitadas anuales promedio

416 tonCO

para salud pública

868-1.323 m² de colectores

44.380 lts. de almacenamiento

57% (12) Sistemas circulación forzada

B/.748.140

nversión tota requerida

łetorno sobr

6 años

Ahorros anuales en CO, equivalentes a 320 ha de bosque panameño

Ahorros anuales en CO2 equivalentes a 431 ha de bosque panameño

23 diseños de proyecta para residencias

441-838 m² de colectores 4.500 lts. de almacenamiento

TERM

11 diseños de proyectos

33% (9)

Sistemas termosifónicos

2.236-3.368 m² de colectores 69.700 lts. de almacenamiento

para Agroindustria

67% (12)

TERM SOLAR

Sistemas circulación forzada

Ahorro anual promedio

78.372 lbs. GLP. 369 MWh elec.

100% (23)

Sistemas termosifónicos

81% de aporte solar 351 MWh_{th}

104 tonCO2

B/. 342.410

7 años

182,148 lbs. GLP 858 MWh elec. 27.840 Gal. Diesel 29.474 Gal. Bunker

80% de aporte solar 1.206 MWh.h

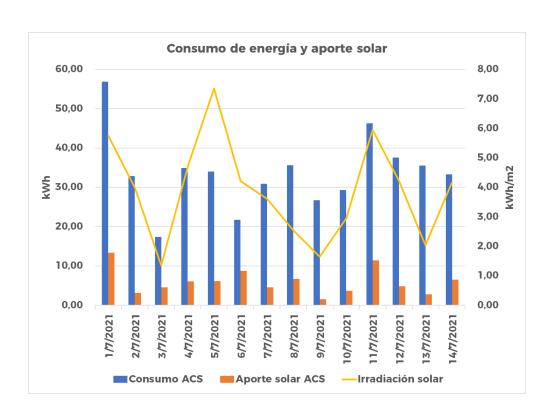
488 tonCO2

B/.1.149.874

10 años

Ahorros anuales en CO2 equivalentes a 80 ha de bosque panameño

Ahorros anuales en CO2 equivalentes a 376 ha de bosque panameño



"Residencia Los Años Dorados"

Proyecto piloto demostrativo

Datos del sistema					
Volumen acumulación solar (litros)	300				
Área de apertura colectores	3,74m²				
Aporte solar promedio	28 %				
Eficiencia solar promedio	46%				
Consumo agua caliente diario promedio (litros)	1000 a 1500				
Sistema auxiliar	Eléctrico con acumulación				

"Residencia Los Años Dorados"

Proyecto piloto demostrativo

- El sistema solar térmico aporta
 el 30% del consumo de agua
 caliente del hogar.
- Ahorro anual de 2,5 MWh
- 0,74 TonCO₂ evitadas al año

Hotel Albrook Inn

Piloto demostrativo en sector privado

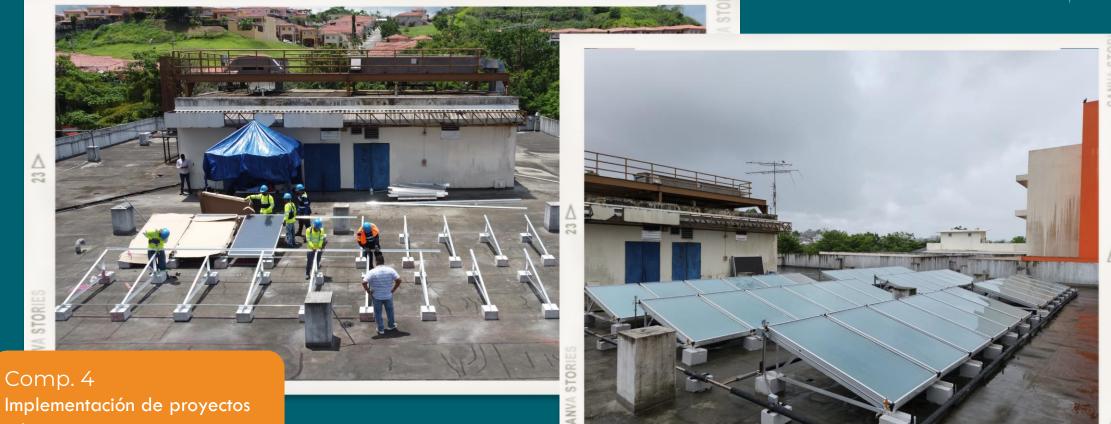
Datos del sistema				
Volumen acumulación solar (litros)	800			
Área de apertura colectores	10,4m²			
Aporte solar promedio	70 %			
Consumo agua caliente diario promedio (litros)	1000			
Sistema auxiliar	Eléctrico con acumulación			

- El sistema solar térmico aporta el 70% del consumo de agua caliente del hotel.
- Ahorro anual de 7,5 MWh
- 1,7 Ton CO₂ evitadas anualmente
- Amortización 5 años.

Piloto Hospital Rural Inabaguiña

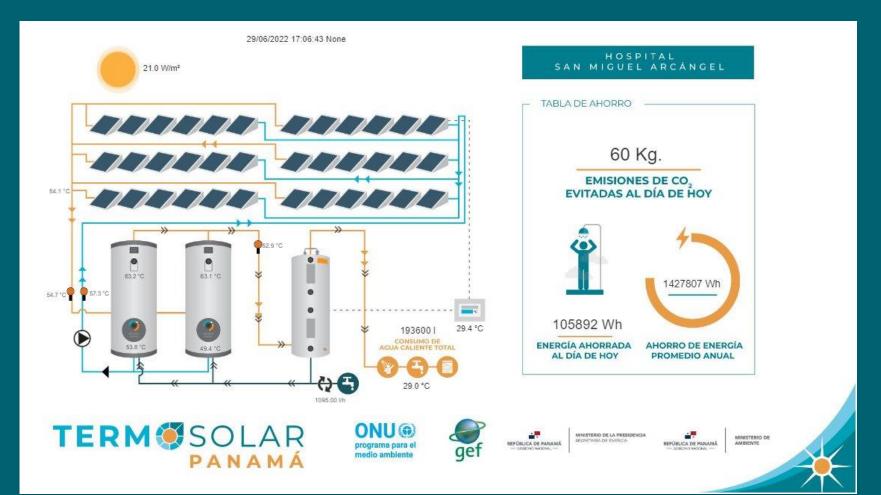
Sector Salud

Datos del sistema						
Volumen acumulación solar (litros)	320					
Área de apertura colectores	$4 \mathrm{m}^2$					
Aporte solar promedio	80 %					
Consumo agua caliente diario promedio (litros)	300					
Sistema de respaldo	Eléctrico en tanque con pulsador indicador					



Hospital San Miguel Arcángel

Instalación finalizada



Implementación de proyectos pilotos

Hospital San Miguel Arcángel

Instalación finalizada

Hospital Luis Chicho Fábrega

Obras civiles comenzadas

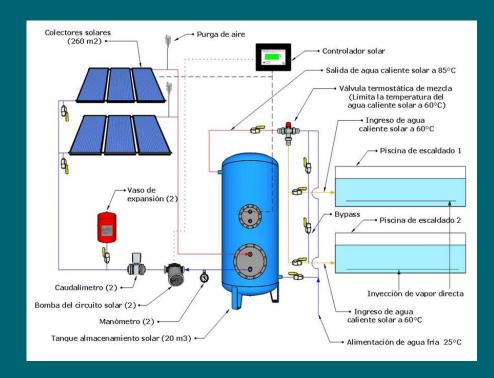
Verificación de documentos en obra

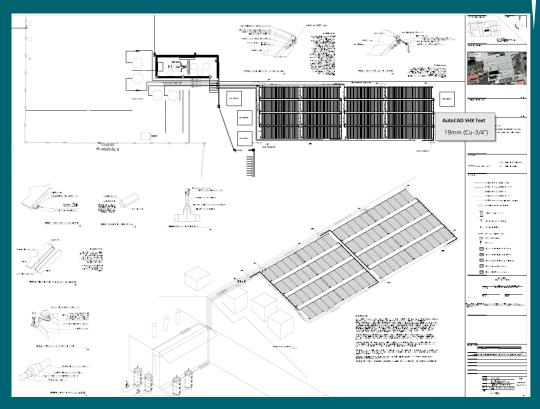
Comp. 4 Implementación de proyectos pilotos

- Proveedor con demoras e irregularidades.
- Con las inspecciones logramos que corrijan la obra.
- Equipos en depósito

Hospital José Domingo Obaldía

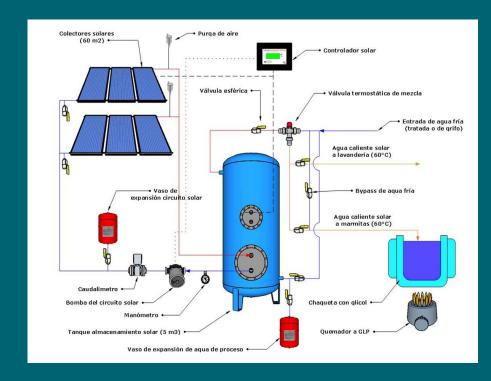
Obras civiles comenzadas


Comp. 4
Implementación de proyectos pilotos


Avícola Melo

Obras civiles en proceso

Primer proyecto Solar Térmico en Industria en Panamá 100% privado



Comp. 4 Implementación de proyectos pilotos

Cocina Pio Pio

Obras civiles en proceso

Comp. 4 Implementación de proyectos pilotos Primer proyecto Solar Térmico de Precocción de Alimentos en la Inudstria de Panamá

	Anual Acumulad 15 años		
Aporte solar (%)	92%	92%	
Ahorro energético (kWh _{th})	48.997,7	734.956,9	
Ahorro lbs (GLP)	12.298,5	184.478,0	
Ahorro emisiones (Ton CO ₂)	13,8	207,3	
Costos de inversión (USD)	55.105		
Aporte UNEP (USD)	10,000		
Costos de inversión (USD)	45.105		
Ahorro económico y ROI (USD)	12595,5	188,931,5	
ROI (USD)	5,67 años		

1.644-2.588 m² de colectores 92.260 lts. de almacenamiento

33% (15) Sistemas circulación forzada

Sistemas termosifónicos

319,643 lbs. GLP 1.505 MWh elec. 48.854 Gal. Diesel

Ahorro anual

promedio

78.372 lbs. GLP.

369 MWh elec.

79% de aporte solar 1.434 MWh_{th}

100% (23)

Sistemas termosifónicos

81% de aporte solar

351 MWh_{th}

336 tonCO2

Emisiones

evitadas

anuales

promedio

104 tonCO2

B/.1.376.021

5 años

Inversión total estimada en

100 proyectos

3.616.445 USD

Ahorro anual promedio

268,950 lbs. GLP 1.267 MWh elec. 41.106 Gal. Diesel nual promedic

43% (9)

Sistemas termosifónicos

76% de aporte solar 1.206 MWh_{th}

Emisiones evitadas anuales promedio

416 tonCO

para salud pública

868-1.323 m² de colectores

44.380 lts. de almacenamiento

57% (12) Sistemas circulación forzada

B/.748.140

nversión tota requerida

łetorno sobr

6 años

Ahorros anuales en CO, equivalentes a 320 ha de bosque panameño

Ahorros anuales en CO2 equivalentes a 431 ha de bosque panameño

23 diseños de proyecta para residencias

441-838 m² de colectores 4.500 lts. de almacenamiento

TERM

11 diseños de proyectos

2.236-3.368 m² de colectores 69.700 lts. de almacenamiento

para Agroindustria

67% (12)

TERM SOLAR

Sistemas circulación

33% (9) Sistemas termosifónicos forzada

promedio

182,148 lbs. GLP 858 MWh elec. 27.840 Gal. Diesel 29.474 Gal. Bunker

80% de aporte solar 1.206 MWh.h

488 tonCO2

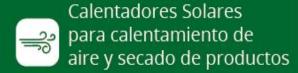
B/.1.149.874

10 años

Ahorros anuales en CO2 equivalentes a 80 ha de bosque panameño

B/. 342.410

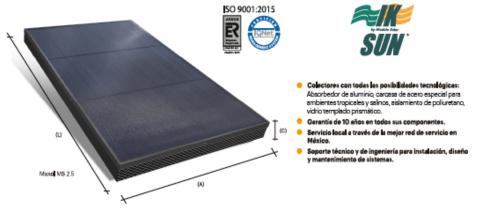
7 años



EL CONSUMO ENERGÉTICO
PARA EL SECADO O
DESHIDRATADO DE
PRODUCTOS ES ALTAMENTE
INTENSIVO Y CONTAMINANTE


SISTEMAS DE SECADO SOLAR INDUSTRIAL A LA MEDIDA

La gama más amplia en soluciones de alta tecnología en energía solar térmica.



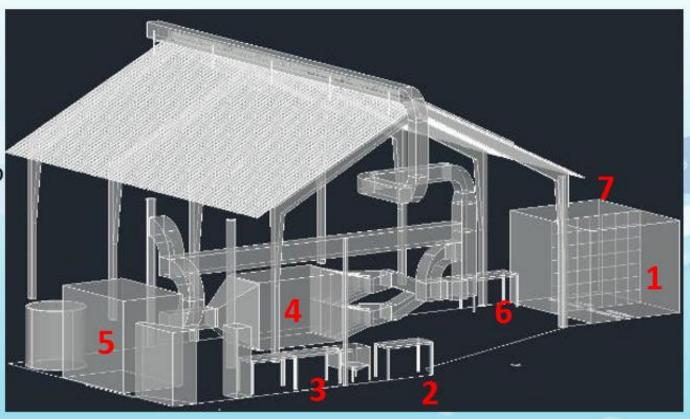
Línea de calentadores solares IK SUN para calentamiento de aire.

Dimensiones		Especificaciones				
Modelo	Aricho cm	Largo cm	Espesor em	Cubierta	Absorbedor	Superficie selectiva
MS 1.7 AIRE	120	150	9	Vidrio Prismático	Aluminio	Negra
MS 2.5 AIRE	120	210	9.5	Vidrio Prismático	Aluminio	Negra

SISTEMAS IK SUN PARA CALENTAMIENTO DE AIRE

Módulo Solar ha obtenido el reconocimiento de reconocidas instituciones tanto nacionales como internacionales por sus aportaciones a las mejores prácticas en la aplicación de calentadores solares en favor de la sustentabilidad y ahorro de enrgía.

Diagrama típico de funcionamiento CAMPO DE COLECTORES SOLARES Salida de aire callente Ventilador de extracción



Diseño de planta de secado

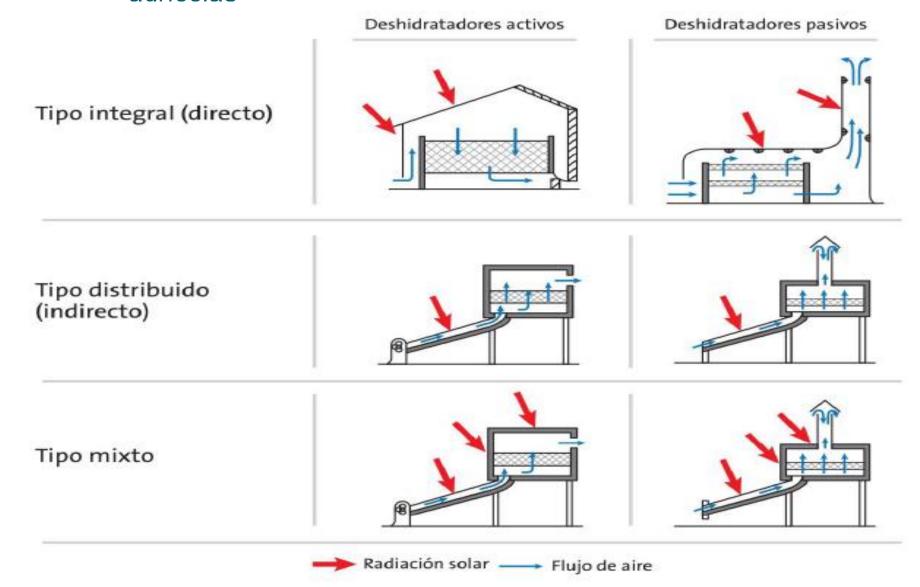
Zonas de la planta de secado

- Bodega para producto fresco
- Área de lavado y desinfección
- Área de preprocesamiento (selección, corte, etc.)
- 4. Túnel de secado
- Laboratorio de análisis de alimentos
- 6. Área de posprocesamiento (triturar, encapsular, etc.) de alimentos
- 7. Bodega de producto terminado.

Isométrico de planta de secado

PLANTA DE secado / DESHIDRATAD O DE CHILES. ZACATECAS

Sistema de calentamiento de aire para túnel de deshidratado de jitomate. Xochitepec, Morelos

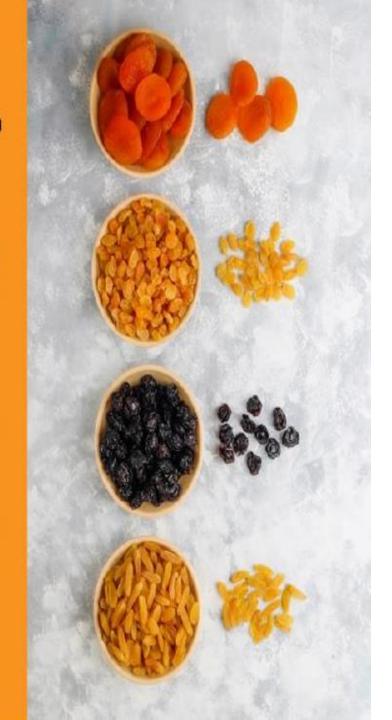

Captadores de Baja y Mediana Temperatura para Calor de Proceso Industrial

EQUIPOS PARA DESHIDRATADO SOLAR

Secado y deshidratado de productos industriales y agrícolas

DESHIDRATADOR SOLAR DE ALIMENTOS

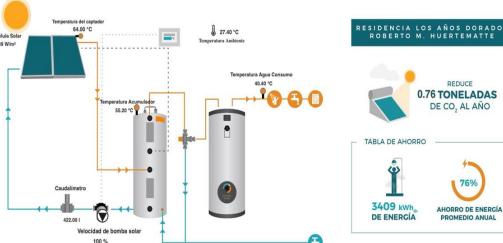
H-D+I SOLAR S.A. de C.V. Parque Gentifico y Tecnológico Morelos Condominio A. Lote 12 Fracc. Senta Fe, C.P. 62797 Xochitepec, Morelos


VENTAJAS INSUPERABLES

- · Portátil, durable, ligero y versátil
- · Permite aprovechar la energía gratis del Sol
- Crea tus propias botanas, postres o recetas sin perder sus propiedades nutricionales
- Conserva los alimentos durante muchos meses y evita desperdicios
- Permite conservar frutas, verduras, carnes, pescados, setas, hierbas, especias.

MODELO	DRYBOX MINI	DRYBOX MINI ²
Capacidad nominal aprox (g)*	750	1500
Peso vacío (g)	1800	3500
Espacio requerido (ancho x largo x alto)	35x32x26 cm	35x64x26 cm
Cámara de secado (dm³, lítros)	22	44
No. de charolas	2	2
Área total de secado en charolas (m²)	0.15	0.30
Materiales	policarbonato, aluminio, lámina pintro	
Temperatura alcanzada (°C)	50-70 °C	
Circulación de aire	Convección natural	
	·	·

- Úsalo para producir tus propios frutos secos o condimentos.
 Inicia tu propio negocio de producción de botanas saludables.
- Reduce el desperdicio de alimentos a través de la deshidratación solar.
- ¿Interesado en usarlo para labores domésticas? Solo coloca tu Drybox en un lugar con buen sol y aprovecha todos los beneficios de la energía limpia


¿Cómo se garantiza, que luego de instalado el sistema, el cliente final obtenga los beneficios estimados?

Monitoreando las prestaciones o evaluando los ahorros.

Sistemas grandes de circulación forzada:

 Con monitoreo remoto de la energía térmica generada y utilizada, incluido en todos los diseños.

Sistemas termosifónicos:

- Ahorro en el consumo de Gas o electricidad.
- Es posible monitorearlo también.

¿Cómo se garantiza, que luego de instalado el sistema, el cliente final obtenga los beneficios estimados?

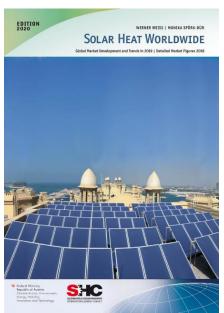
Utilizando equipamiento de calidad debidamente ensayado y certificado.

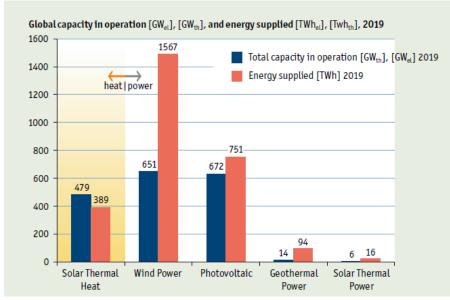
Normas panameñas ya existentes:

- Norma Técnica DGNTI-COPANIT ISO 9488-199. Energía Solar Definiciones y Terminología.(Publicada)
- Norma Técnica DGNTI-COPANIT ISO 9806. Energía solar. Colectores solares térmicos. Métodos de ensayo.(Publicada)
- Norma Técnica DGNTI-COPANIT ISO 9459. Energía solar. Equipos prefabricados solares térmicos. Métodos de ensayo y requisitos.(En discusión publica)
- Reglamento técnico para la instalación de calentadores solares de agua. (En elaboración)

Otras certificaciones internacionales de calidad:

- Solar Keymark
- SRCC
- INMETRO
- Banco de ensayos UTP





3

¿Cómo se garantiza, que luego de instalado el sistema, el cliente final obtenga los beneficios estimados?

Tecnología confiable a nivel mundial: 690,000,000 m² instalados al 2019!!!

 Casi las misma capacidad instalada mundial que solar fotovoltaica (y rinde 4 veces más para generar calor!.)

Informe IEA, nuclea 95% del mercado mundial solar térmico:

<u>https://www.iea-</u> <u>shc.org/Data/Sites/1/publications/Solar-Heat-</u> Worldwide-2020.pdf

Mercados regionales:

- Barbados: 236,000 m²
- Brasil: 16,000,000 m²
- Chile: 354,000 m²
- México: 4,333,752 m²
- Uruguay: 76,000 m²
- USA: 25,000,000 m²

Proveedores locales

Iniciativas complementarias:

- Curso de formación de proveedores con el SPIA (Sociedad Panameña de Ingenieros y Arquitectos).
- Curso de formación de proveedores online
- Curso de proveedores en CPES (Cámara Panameña de Energía Solar) y vinculación con empresas del exterior
- Elaboración de manual de fabricación de calentadores solares de agua
- Elaboración de plan de negocios para la CPES
- Elaboración de manual de inversión para fabricar equipos en Panáma.

GRACIAS

Jesus Gonzalez

Jesus.gonzalez

Jesus.gonzalez

Jesus.gonzalez

Jesus.gonzalez

Jesus.gonzalez

Jesus.gonzalez

Jesus.gonzalez

www.termosolarpanama.com #Termosolar Panamá #Solarízate