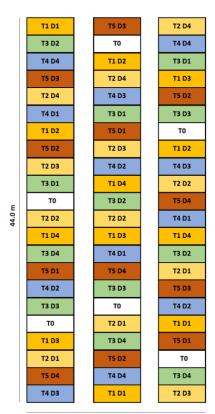


Eficiencia de Utilización de Fósforo de maíz forrajero usando distintas fuentes de fertilización fosforada en un Andisol

Phosphorus utilization efficiency for forage maize fertilized with different fertilizer phosphorus sources in an Andisol

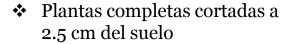
Eficiencia de uso de Fósforo (EUP)

Objetivo


Determinar la variación de la eficiencia de Utilización de Fósforo (EfUtP) bajo condiciones de diferentes suministro de P adicionado con distintas fuentes de fertilizantes fosforados

Diseño experimental

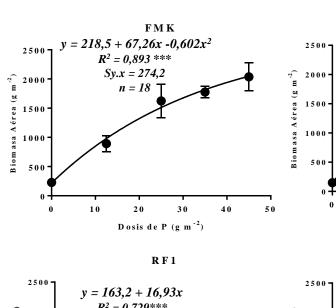
Maíz híbrido Pioneer P7524 FAO 220

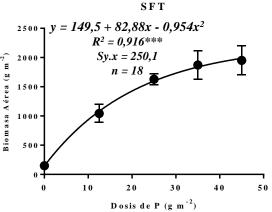

- Estación Experimental Austral (Valdivia)
- Suelo Valdivia (duric Hapludand)
- ❖ 5 fuentes de fertilizantes fosforados: Fosfato monopotásico (FMK), Superfosfato triple (SFT) Fosfato diamónico (FDA), Roca fosfórica Fosfomax (RF1) y Roca fosfórica Sechura (RF2)
- 5 niveles de P: 0, 125, 250, 200, 350 y
 450 kg P ha⁻¹
- Fecha de siembra: 27 de noviembre de 2017
- Parcelas de 3 * 2 m (5 hileras)
- Fertilización de N, K, S y micronutrientes homogénea

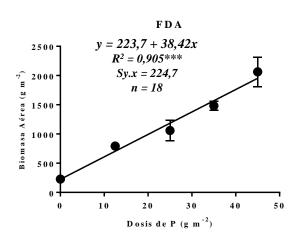
- Bloques completos al azar
- ❖ 0,5 m EH y 0,18m SH
- ❖ 111 plantas m⁻²

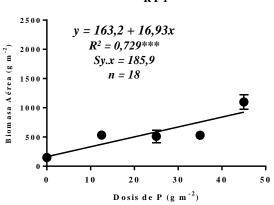
Evaluaciones

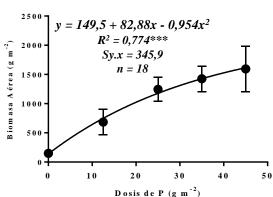
- Parámetros de suelo: o-20 cm de profundidad
- ❖ pH al agua de 5,63; pH en cloruro de Ca de 4,98;
- ❖ P Olsen de 5,9 ppm; Al intercambiable de 0,25 cmol, kg⁻¹
- Suma de bases de 5,9 cmol₊ kg⁻¹.





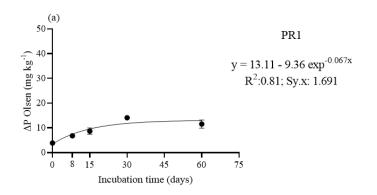

Propiedad	Unidad	Valor
pH-H ₂ O		5.63
pH-CaCl ₂		4.98
Al-Extractable	mg kg ⁻¹	1200
Al-Intercambiable	cmol _c kg ⁻¹	0.25
P-Olsen	mg kg ⁻¹	5.90
K-Intercambiable	cmol _c kg ⁻¹	0.87
Ca-Intercambiable	cmol _c kg ⁻¹	2.68
Mg-Intercambiable	cmol _c kg ⁻¹	1.39
Na-Intercambiable	cmol _c kg ⁻¹	0.15
Fe	mg kg ⁻¹	18.54
Cu	mg kg ⁻¹	0.76
Mn	mg kg ⁻¹	2.85


- Separación de órganos
- Peso fresco y seco (horno 70 °C)
- Materia seca (%)
- Análisis de P cenizas y determinación colorimétrica en molibdato de amonio
- Obtención de P (%) para cada órgano

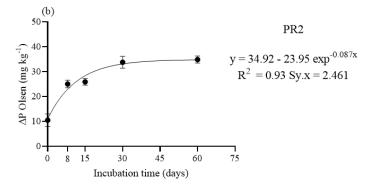

Rendimiento de MS total

RF2

Comportamiento diferente de acuerdo a la fuente

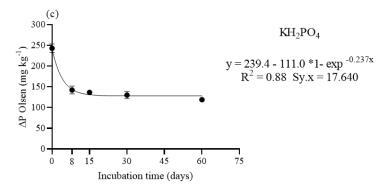

Máxima producción con solubles

Respuesta de la Roca depende de su solubilización en el suelo

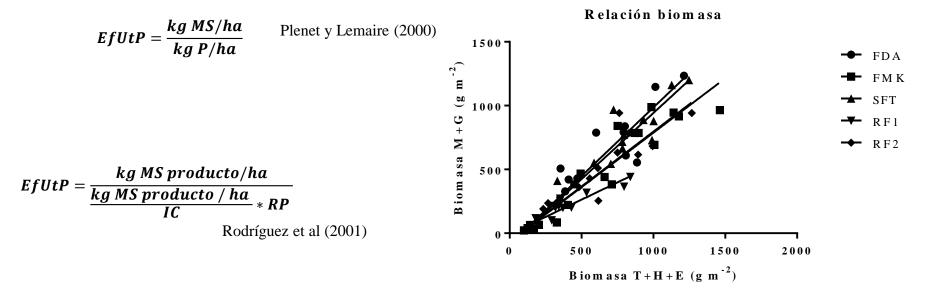

Máxima productividad (20 a 21 t MS ha⁻¹) se alcanzó con fertilización con FMK, SFT

Sale et al. 1997. AJEA 37, 921-936 Chien y Friesen 2000. IAEA pp 73-89 Kochian et al. 2004. ARPB 55, 459-493 Coorales et al. 2011. JPN 30, 887.900

Extractabilidad de P-Olsen en el tiempo desde distintos tipos de fertilizantes


	KH_2PO_4	PR 1	PR 2
		%	
Fósforo total	$23.06 \pm 0.21a$	12.55 ± 0.06 b	12.87 ± 0.02 b
soluble en agua	$21.86 \pm 0.10a$	$0.32 \pm 0.02b$	$0.30 \pm 0.01b$
soluble en NAC extracción 1	$1.01 \pm 0.25c$	$2.17 \pm 0.03b$	$2.62 \pm 0.11a$
extracción 2		$2.91b \pm 0.01b$	$3.72 \pm 0.13a$
Calcio total	$0.01 \pm 0.00b$	$40.21 \pm 2.49a$	$38.78 \pm 1.29a$

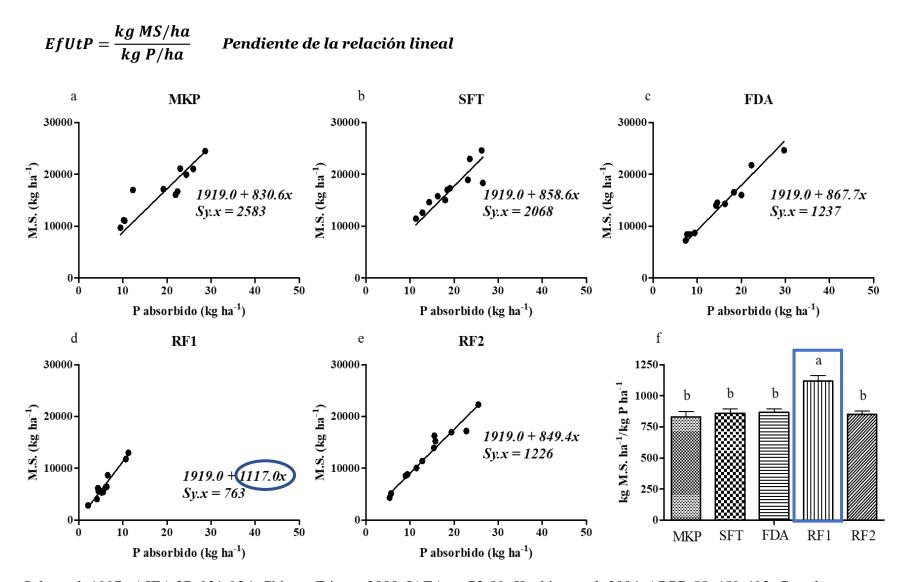
Extractabilidad en el tiempo de P-Olsen de Fósforo aplicado desde distintas fuentes al suelo Valdivia (Duric Hapludand) en una incubación a 65 %MCRH y 25 °C


(a) PR1, (b) PR2 and (c) KH₂PO₄ al mismo valor de pH del suelo (5.6).

Cada punto es el valor de la media y el error estándar (n = 6)

Syers et al. 2008. FAO bulletin 18. McLaugghin et al. 2011. PS 349: 69-87 Vasconez y Pinochet. 2018. JSSPN 16, 60-72 Yamprada et al. 2006. SSSAJ 69, 200-211

Variación en la biomasa producida por los distintos tratamientos (razón T+H+E/M+G)



¿Cuál es el efecto de la partición de la producción de materia seca?

	Pendiente		interce	pto
	b	± e.e.	a	± e.e
FMK	0,8530	0,0736 a	-95,49	56,2 a
SFT	1,0356	0,0757 a	-93,63	54,2 a
FDA	1,0745	0,0986 a	-88,98	59,98 a
RF1	0,5408	0,0582 ь	-7,294	23,17 a
RF2	0,8584	0,0871 a	-62,71	53,85 a

Rodríguez, Pinochet y Matus. 2001. La fertilización de los cultivos. Editorial LOM. 117 p.. Plenet y Lemaire. 2000. PS 216,65-82

Eficiencia de Utilización: Razón MS total / P absorbido

Sale et al. 1997. AJEA 37, 921-936; Chien y Friesen 2000. IAEA pp 73-89; Kochian et al. 2004. ARPB 55, 459-493; Corrales et al. 2011. JPN 30, 887.900

Conclusión

La Eficiencia de Utilización de Fósforo de maíz forrajero fue mayor en condiciones de deficiencia del P disponible, lo que implica que en estas condiciones el cultivo utiliza más eficientemente el P absorbido, pero a un costo de disminución de la productividad y muestra que un adecuado uso de esta eficiencia debe considerar la demanda del cultivo.

Muchas Gracias!!!